Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the si Contact online >>
Thank you for visiting nature . You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.
Description of figures from left to right. (a) Growth of global BEV sales. (b) Problems preventing BEV growth. (c) Single charge range and battery charging time of high-end BEVs.
Description of figures from left to right. (a) P2C2 enabled charge sharing among BEVs and MoCS-based charge distribution for charging on-the-go11. (b) A MoCS leader escorting/recharging a BEV platoon.
We introduce a novel solution to address the BEV charging issue by proposing an on-the-go peer-to-peer charge sharing scheme. We formalize a complete framework that enables BEVs to share charge on the go guided by a cloud-based control system.
We introduce the concept of mobile charging stations that seamlessly fit into our framework. These mobile charging stations are deployed in charge-deprived regions to boost the overall network charge level.
We formalize the decision-making process of the control system and propose an algorithm for efficient charge transaction scheduling, optimal MoCS insertion, and optimal rerouting.
We quantitatively analyze the effectiveness of our solution using the simulation frameworks that we have developed. Through statistical analysis, we project the effective greenhouse gas emission reduction possible through a P2C2 framework.
In this section, we shall look at different issues preventing BEVs from being widely adopted. We will also analyze some of the proposed solutions and qualitatively compare them to P2C2.
BEVs have been around since 1823, but despite substantial corporate and government effort, it is still not a viable transport solution for the masses. Several battery-related concerns such as limited range, battery cost, and lack of charging stations have deterred consumers from allowing BEVs to become mainstream.
The life of a Lithium-ion (Li-ion) battery degrades faster if it is subject to complete discharge or inefficient charging cycles. Li-ion batteries are widely used in BEVs13. Hence, completely draining the BEV battery may be undesirable to the car owners. Hence, if the user chooses to avoid accelerated battery ageing, then it virtually decreases the BEV''s range. Also, BEVs are generally more expensive than their traditional ICE vehicle counterparts due to high battery manufacturing cost.
Issues relating to the battery and charging appears to be the core hurdle preventing a full-scale adoption of BEVs. Next, we shall discuss some of the proposed existing solutions aimed at countering battery related issues in BEVs. Table 1 provides a comparison among existing solutions and P2C2 (proposed).
Several research and industry efforts are also being made towards developing battery swapping techniques21,22. However, such battery swapping stations are very expensive to build and a large number of such stations will be required to support a big BEV fleet. Directly accessing the BEV battery (mostly located at the base of the BEV to lower the center of gravity) is also challenging and will require major changes to the core BEV architecture.
Several solutions have been proposed around the idea of BEV-to-BEV charge sharing at designated hubs. A hub can be an aggregator or a charging station. In works such as8,22, the BEVs parked at a hub share charge among each other and the grid to optimize overall charging efficiency. The aggregator can also allow direct V2V charge sharing bypassing the grid15,16,17. Such a hub will be less expensive to build than a charging station because no grid connectivity is required.
The idea of trucks distributing charge to regions lacking charging stations has been proposed in19,24,25. The trucks initially receive charge at a depot and then travel to a designated spot in which this charge can be distributed via stationary V2V charging. Additionally, to counter the lack of BEV charging ports in parking lots, the concept of a robot-like charging entity has been proposed that can move around the parking lot and serve multiple BEVs20.
However, relying on designated hubs such as aggregators and charging stations to share charge is both expensive and inconvenient due to significant infrastructure requirements. Hence in works such as7,18, the authors experiment with V2V charge sharing without the availability of any designated hubs. The game theory based solution in7 achieved improved charge sharing efficiency in comparison to other techniques. Yet, for all of these solutions, the BEVs must be parked at equipped parking lots and remain stationary during the entire charging process.
Charging BEVs from the road can be an effective solution, but it may not be the most efficient. A road in Normandy, France, was fitted with solar panels to generate electricity in 2018. It produced only a total of 80,000 kWh in that year and about 40,000 kWh by the end of July 20196. The lack of efficiency was due to (1) Normandy''s climate (average 44 days of sunshine), (2) damaged solar panels, and (3) obstructions from leaves. Converting every major roadways in the world into electric/solar roads is a big financial undertaking, rendering this solution practically infeasible.
A wireless charging solution was proposed by Kosmanos, D.et al.9 which involves charging BEVs from a Bus or Truck. State-of-the-art wireless charge transfer techniques have efficiencies of about 40–60%. A coil of 340 cm or 11.15 feet in diameter has a maximum 60% power transfer efficiency while transmitting across 170 cm or 2.2 feet10. Such a small distance is extremely unsafe for on-the-go charging in most traffic scenarios and building/hosting such huge coils on both the receiver and the transmitter can be challenging.
About Ngerulmud battery electric vehicles bevs
As the photovoltaic (PV) industry continues to evolve, advancements in Ngerulmud battery electric vehicles bevs have become critical to optimizing the utilization of renewable energy sources. From innovative battery technologies to intelligent energy management systems, these solutions are transforming the way we store and distribute solar-generated electricity.
When you're looking for the latest and most efficient Ngerulmud battery electric vehicles bevs for your PV project, our website offers a comprehensive selection of cutting-edge products designed to meet your specific requirements. Whether you're a renewable energy developer, utility company, or commercial enterprise looking to reduce your carbon footprint, we have the solutions to help you harness the full potential of solar energy.
By interacting with our online customer service, you'll gain a deep understanding of the various Ngerulmud battery electric vehicles bevs featured in our extensive catalog, such as high-efficiency storage batteries and intelligent energy management systems, and how they work together to provide a stable and reliable power supply for your PV projects.