Clean energy is the leading solution for climate change. But solar and wind power are inconsistent at producing enough energy for a reliable power grid. Alternatively, lithium-ion batteries can store energy but are a limited resource. Contact online >>
Clean energy is the leading solution for climate change. But solar and wind power are inconsistent at producing enough energy for a reliable power grid. Alternatively, lithium-ion batteries can store energy but are a limited resource.
"The advantage of a coal power plant is it''s very steady," said Nian Liu, an assistant professor at the Georgia Institute of Technology. "If the power source fluctuates like it does with clean energy, it makes it more difficult to manage, so how can we use an energy storage device or system to smooth out these fluctuations?"
The all-Georgia Tech research team published their findings in the paper, "A Sub-Millimeter Bundled Microtubular Flow Battery Cell With Ultra-high Volumetric Power Density," in Proceedings of the National Academy of Sciences.
Flow batteries get their name from the flow cell where electron exchange happens. Their conventional design, the planar cell, requires bulky flow distributors and gaskets, increasing size and cost but decreasing overall performance. The cell itself is also expensive. To reduce footprint and cost, the researchers focused on improving the flow cell''s volumetric power density (W/L-of-cell).
They turned to a configuration commonly used in chemical separation — sub-millimeter, bundled microtubular (SBMT) membrane — made of a fiber-shaped filter membrane known as a hollow fiber. This innovation has a space-saving design that can mitigate pressure across the membranes that ions pass through without needing additional support infrastructure.
Liu''s lab in the School of Chemical and Biomolecular Engineering (ChBE) developed a more compact flow battery cell configuration that reduces the size of the cell by 75%, and correspondingly reduces the size and cost of the entire flow battery.
"We were interested in the effect of the battery separator geometry on the performance of flow batteries," said Ryan Lively, a professor in ChBE. "We were aware of the advantages that hollow fibers imparted on separation membranes and set out to realize those same advantages in the battery field."
Applying this concept, the researchers developed an SMBT that reduces membrane-to-membrane distance by almost 100 times. The microtubular membrane in the design works as an electrolyte distributor at the same time without the need for large supporting materials. The bundled microtubes create a shorter distance between electrodes and membranes, increasing the volumetric power density. This bundling design is the key discovery for maximizing flow batteries'' potential.
"The superior performance of the SMBT was also demonstrated by finite element analysis," said Xing Xie, an assistant professor in the School of Civil and Environmental Engineering. "This simulation method will also be applied in our future study for cell performance optimization and scaling up."
With zinc-iodide chemistry, the battery could run for more than 220 hours, or to > 2,500 cycles at off-peak conditions. It could also potentially reduce the cost from $800 to less than $200 per kilowatt hour by using recycled electrolyte.
The researchers are already working on commercialization, focusing on developing batteries with different chemistries like vanadium and scaling up their size. Scaling will require coming up with an automated process to manufacture a hollow fiber module, which now is done manually, fiber by fiber. They eventually hope to deploy the battery in Georgia Tech''s 1.4-megawatt microgrid in Tech Square, a project that tests microgrid integration into the power grid and offers living laboratory for professors and students.
The SBMT cells could also be applied to different energy storage systems like electrolysis and fuel cells. The technology could even be strengthened with advanced materials and different chemistry in various applications.
"This innovation is very application driven," Liu said. "We have the need to reach carbon neutrality by increasing the percentage of renewable energy in our energy generation, and right now, it''s less than 15% in the U.S. Our research could change this."
Yutong Wu, Fengyi Zhang, Ting Wang, Po-Wei Huang, Alexandros Filippas, Haochen Yang, Yanghang Huang, Chao Wang, Huitian Liu, Xing Xie, Ryan P. Lively, Nian Liu,"A Submillimeter Bundled Microtubular Flow Battery Cell with Ultrahigh Volumetric Power Density."PNAS (2023).
About Flow batteries georgetown
As the photovoltaic (PV) industry continues to evolve, advancements in Flow batteries georgetown have become critical to optimizing the utilization of renewable energy sources. From innovative battery technologies to intelligent energy management systems, these solutions are transforming the way we store and distribute solar-generated electricity.
When you're looking for the latest and most efficient Flow batteries georgetown for your PV project, our website offers a comprehensive selection of cutting-edge products designed to meet your specific requirements. Whether you're a renewable energy developer, utility company, or commercial enterprise looking to reduce your carbon footprint, we have the solutions to help you harness the full potential of solar energy.
By interacting with our online customer service, you'll gain a deep understanding of the various Flow batteries georgetown featured in our extensive catalog, such as high-efficiency storage batteries and intelligent energy management systems, and how they work together to provide a stable and reliable power supply for your PV projects.