
Images for download on the MIT News office website are made available to non-commercial entities, press and the general public under a Creative Commons Attribution Non-Commercial No Derivatives license. You may not alter the images provided, other than to crop them to size. A credit line must be used when reproducing images; if one is not provided below, credit the images to "MIT."
Lithium-ion batteries are the workhorses of home electronics and are powering an electric revolution in transportation. But they are not suitable for every application.
A key drawback is their flammability and toxicity, which make large-scale lithium-ion energy storage a bad fit in densely populated city centers and near metal processing or chemical manufacturing plants.
Now Alsym Energy has developed a nonflammable, nontoxic alternative to lithium-ion batteries to help renewables like wind and solar bridge the gap in a broader range of sectors. The company''s electrodes use relatively stable, abundant materials, and its electrolyte is primarily water with some nontoxic add-ons.
"Renewables are intermittent, so you need storage, and to really solve the decarbonization problem, we need to be able to make these batteries anywhere at low cost," says Alsym co-founder and MIT Professor Kripa Varanasi.
The company believes its batteries, which are currently being tested by potential customers around the world, hold enormous potential to decarbonize the high-emissions industrial manufacturing sector, and they see other applications ranging from mining to powering data centers, homes, and utilities.
"We are enabling a decarbonization of markets that was not possible before," Alsym co-founder and CEO Mukesh Chatter says. "No chemical or steel plant would dare put a lithium battery close to their premises because of the flammability, and industrial emissions are a much bigger problem than passenger cars. With this approach, we''re able to offer a new path."
Chatter started a telecommunications company with serial entrepreneurs and longtime members of the MIT community Ray Stata ''57, SM ''58 and Alec Dingee ''52 in 1997. Since the company was acquired in 1999, Chatter and his wife have started other ventures and invested in some startups, but after losing his mother to cancer in 2012, Chatter decided he wanted to maximize his impact by only working on technologies that could reach 1 billion people or more.
"The intent was to light up the homes of at least 1 billion people around the world who either did not have electricity, or only got it part of the time, condemning them basically to a life of poverty in the 19th century," Chatter says. "When you don''t have access to electricity, you also don''t have the internet, cell phones, education, etc."
To solve the problem, Chatter decided to fund research into a new kind of battery. The battery had to be cheap enough to be adopted in low-resource settings, safe enough to be deployed in crowded areas, and work well enough to support two light bulbs, a fan, a refrigerator, and an internet modem.
He finally found his partners in Varanasi, Rensselaer Polytechnic Institute Professor Nikhil Koratkar and Rensselaer researcher Rahul Mukherjee. Varanasi, who notes he''s been at MIT for 22 years, says the Institute''s culture gave him the confidence to tackle big problems.
"My students, postdocs, and colleagues are inspirational to me," he says. "The MIT ecosystem infuses us with this resolve to go after problems that look insurmountable."
Varanasi leads an interdisciplinary lab at MIT dedicated to understanding physicochemical and biological phenomena. His research has spurred the creation of materials, devices, products, and processes to tackle challenges in energy, agriculture, and other sectors, as well as startup companies to commercialize this work.
"Working at the interfaces of matter has unlocked numerous new research pathways across various fields, and MIT has provided me the creative freedom to explore, discover, and learn, and apply that knowledge to solve critical challenges," he says. "I was able to draw significantly from my learnings as we set out to develop the new battery technology."
Alsym''s founding team began by trying to design a battery from scratch based on new materials that could fit the parameters defined by Chatter. To make it nonflammable and nontoxic, the founders wanted to avoid lithium and cobalt.
Although the full makeup of Alsym''s battery is still under wraps as the company waits to be granted patents, one of Alsym''s electrodes is made mostly of manganese oxide while the other is primarily made of a metal oxide. The electrolyte is primarily water.
There are several advantages to Alsym''s new battery chemistry. Because the battery is inherently safer and more sustainable than lithium-ion, the company doesn''t need the same safety protections or cooling equipment, and it can pack its batteries close to each other without fear of fires or explosions. Varanasi also says the battery can be manufactured in any of today''s lithium-ion plants with minimal changes and at significantly lower operating cost.
"We are very excited right now," Chatter says. "We started out wanting to light up 1 billion people''s homes, and now in addition to the original goal we have a chance to impact the entire globe if we are successful at cutting back industrial emissions."
Although the batteries don''t quite reach the energy density of lithium-ion batteries, Varanasi says Alsym is first among alternative chemistries at the system-level. He says 20-foot containers of Alsym''s batteries can provide 1.7 megawatt hours of electricity. The batteries can also fast-charge over four hours and can be configured to discharge over anywhere from two to 110 hours.
"We''re highly configurable, and that''s important because depending on where you are, you can sometimes run on two cycles a day with solar, and in combination with wind, you could truly get 24/7 electricity," Chatter says. "The need to do multiday or long duration storage is a small part of the market, but we support that too."
Alsym has been manufacturing prototypes at a small facility in Woburn, Massachusetts, for the last two years, and early this year it expanded its capacity and began to send samples to customers for field testing.
About Battery technologies pristina
As the photovoltaic (PV) industry continues to evolve, advancements in Battery technologies pristina have become critical to optimizing the utilization of renewable energy sources. From innovative battery technologies to intelligent energy management systems, these solutions are transforming the way we store and distribute solar-generated electricity.
When you're looking for the latest and most efficient Battery technologies pristina for your PV project, our website offers a comprehensive selection of cutting-edge products designed to meet your specific requirements. Whether you're a renewable energy developer, utility company, or commercial enterprise looking to reduce your carbon footprint, we have the solutions to help you harness the full potential of solar energy.
By interacting with our online customer service, you'll gain a deep understanding of the various Battery technologies pristina featured in our extensive catalog, such as high-efficiency storage batteries and intelligent energy management systems, and how they work together to provide a stable and reliable power supply for your PV projects.
Related Contents